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Abstract. Eigenvalue correlations of random matrix ensembles as a function of an external 
@ammetric) perturbation are investigated via the Dyson Brownian-motion model in the situation 
where the level density has a hard edge singularity. By solving a linearized hydrodynamical 
equation, a universal dependence of the density-densiry correlator on the external field is found. 
As an application. we obtain a formula for the variance of linear statistics with the parametric 
dependence exhibited as a Laplace transform. 

1. Introduction 

Eigenvalues of N x N matrices can be viewed as the energy levels (xa, a = 1, . .., N )  of 
an effective Hamiltonian 

HO = C x a n u  
Y 

where the nu are the occupation at level a. A proposal by Wigner [l] is that the levels are 
drawn from an ensemble of matrices and, when restricted to the eigenvalues, have the joint 
probability distribution 

N N 

W i , . . . , x ~ ) n d x ,  = C ~ e x p [ - - B w ( ~ i  , . . . , x ~ ; u ) l n . ( .  (2) 
U = l  .=I 

where 

CN is a constant and 8 = 2, 1,4 describes ensembles with unitary, orthogonal and 
symplectic symmetries, respectively. The density of the levels is defined by 

where (. . .)cs is an average with weight P of equation (2). For ~ ( x )  = x2 and x, supported 
on the real line, U is given by the Wigner semi-circular law [ 11 in the limit of large N ,  
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Other ensembles arising from transport in disordered electronic systems 121 have xu 
supported on the right half-line with different confining potentials, u ( x ) .  For u ( x )  = x u  
and CY > 

K J Erikren and Yang Chen 

one finds the eigenvalue density [3,4] 

u(x )  -E x.<< N (6) 

is universal near the 'hard edge' [5], in the sense that it is independent of a. It can be shown 
that for 0 c CY < i, u ( x )  - I/X'-~ [4]. In this paper we are interested in the response 
of the levels when HO is perturbed by an external potential. Of particular interest is the 
eigenvalue correlator as a function of the external potential. This problem was first studied 
in the context of the energy-eigenvalues distribution of a disordered metallic ring subjected 
to an external magnetic field, using diagrammatic techniques [6]t, and it was found that the 
eigenvalue correlations are universal after an appropriate rescaling. These results were later 
reproduced in [7] using the Brownian-motion model of Dyson [SI in the hydrodynamical 
approximation. Exact correlations for all strengths of the perturbation were obtained in [9] 
using! the method of supersymmehy pioneered by Efetov [IO]. All of the above results are 
valid in the bulk of the spectrum where the density is uniform, ubulk = u ~ ( 0 )  = constant. 
The random mahix ensembles investigated in [2] follows from the global maximum entropy 
ansatz. In this formulation the l / f i  singularity is a generic feature for a general class of 
confining potential as discussed above and in [3 ,4] .  To interpret the time parameter as an 
external field would require a specific microscopic model. This was partially accomplished 
in [12]. 

The phenomenological theory proposed by Dyson IS] interprets the eigenvalues x, as 
positions of classical particles which are governed by an over-damped Langevin equation 
subjected to a Gaussian random force f d ( ~ ) .  

dx, a w  
y- = -- + f . ( r )  

ax,, d r  
where y is the friction coefficient, 

(7) 

and T is related to the strength of the perturbation, X. Since the x,'s undergo a Brownian 
motion it is to be expected that X? a r IS, 111. A Fokker-Planck equation that describes 
the 'time'-dependent joint probability distribution can be derived, and reads 

subjected to the initial condition: 

where x," is the initial position of particle a. The stationary solution of the Fokker-Planck 
equation is 

It was shown by Dyson [SI that the time-dependent density 
P ( X l .  ... ,XN, 00) = CNe-BW. (10) 

t More precisely. the density of rue-density of state mmlation function 81 different fluxes. 
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(here (. . .), denotes an average with ‘time-dependent’ weight given in equation (9)) satisfies 
a nonlinear conservation law in the ‘hydrodynamical’ approximation. The non-equilibrium 
density u(x ,  r )  evolves in r according to 

( sax> a a 
a s  ax -u(x,  r )  = - u ( x ,  r)-Q 

where 

Q ( x ,  5 )  = u ( x )  - d y u ( y ,  r ) ln lx  - yI + In[o(x, r ) ] .  (13) 

Note that the ‘time’-dependent density i s  normed to N; j ,  dx u ( x ,  t) = N, where K is the 
interval on which the levels are supported. 

The solution of equation (12) with equation (13) will enable us to determine the 
parametric ( r )  dependence of quantities related to the eigenvalues x,. 

2. Linearization 

The stationary density u(x )  := u(x, ca) of the nonlinear diffusion equation satisfies a 
self-consistent Huckel-type equation 

u ( x )  - dy u(y)ln Ix - yI + ( i  - - - :> In[u(x)] = A =constant. (14) 

This suggests that for a sufficiently long time periodt, we split the non-equilibrium density 
into an equilibrium part plus a small perturbation p(x .  r ) :  

(15) 
where u ( x )  is the equilibrium density. Substituting equation (15) into equation (12) and 
discarding all terms of O(p2) gives 

~ ( x ,  r )  = ~ ( x )  + PO, r )  

where the ‘particle’ flux is 

J ( x ,  r )  := -- a 1 p(y, r ) l n  Ix - yI dy. 
Y ax 

This particle flux requires the entire distribution, p ,  to specify its value at one point, unlike 
the ordinary diffusion equation. As an example we consider the Gaussian ensembles with 
u(n) = xz and K = (-a, a). In the N --t CO limit and scaling into the bulk x << N, 
where the density is uniform, u ( x )  = D = constant then the diffusion equation becomes 

This is converted into 

via the Fourier transform [7,8] jt(r) = l-’,” dr eik”p(x, r )  with the solution 

r 2 5’. (7-0) > &(r)  = &(r’)exp - - [k l ( r  - r‘) ( “,” 
t More precisely D r l y L  >> I .  where L is the interval over which the density extends 181. 
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From the r dependence of A, we can infer &e r dependence of 
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where 

denotes an average over the initial condition. Here Corr(p, k) is the Fourier transform of 
the equilibrium density-density correlation function+ [ I ]  

2 +m 
dy exp(ikx + ipy)Corr(x - y) = - -S(A + p)lkl .  (23) 

x s  
Corr(p, k) = 

Therefore, 

is the universal ‘time’dependent density-density correlation function when r is measured 
in units of y j n D  [6,7,9]$. 

3. Hard edge correlations 

We shall now focus our attention on the ensembles where the eigenvalues are supported on 
the right half-line and a ( x )  has the universal square root singularity at the origin. 

Corr(x. y ,  t )  and Int(x, y, r)-the twice integrated version of Corr(x, y. 5)-are 
derived in section 3. These are applied to determine the parametric dependence of the 
variance of arbitrary linear statistics given by equations (51) and (54). As an application in 
section 4, we compute the variance of + x n ( t ) J - ’ ,  which gives the conductance 
fluctuation of a quasi-one-dimensional disordered system as a function of the external 
perturbation. According to the Landauer formula the conductance g is C,[l + x J ’  [Z ] .  

Therefore, we have solved in the hydrodynamical approximation the problem posed in 
[7] for the case where the equilibrium eigenvalue density displays a hard edge singularity 
a(x) - D/&. Since the translational invariance is no longer valid, results obtained in 
the bulk scaling limit of the Gaussian ensembles (with u ( x )  = x z )  are no longer applicable 
[12]. For example, the gap formation probability Eg(0. s) of the Laguerre ensembles (with 
u(x )  = x - a I n x , x  > 0,a > -l)isdistinctfromthatoftheGaussianensembles[5.13,14]. 
We expect Corr(x, y, t )  to have distinct ‘time’ decay modes from those found in the bulk 
scaling cases. 

1 
t The exact density-density correlation function for the Gaussian ensemble (j3 = 2 and x # y )  iS - [w] 
[I]. The hydrodynamical approximation essentially replaces [sinn(x - yl]’ With 1.. 
t Reference [9] gives the exact result for all r > 0 and f l  = 2. I, 4. 
$ An appliwtion of a dimensiolwl argument on equation (la), obtained by swling into the bulk of the spectrum, 
shows that the typical distance covered by a diffusing particle over time t is 1x1 - 1. which is ‘faster’ than Einslein 
diffusion 1x1 - Ji. Looking ahead to equation (24) the same analysis shows that 1x1 - 1 ’ ~ .  This suggests that 
particle tmsponi new the hard edge is intermediate between ballistic motion and classical diffusion. 
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The diffusion equation now reads 

where D r / y  = 1. (We have written p(x .  r) = p ( x ,  t ) . )  With the ansatz p(x. t )  o( 
p(x, A)e-", equation (24) becomes 

The boundary condition on p(x, A) is such that the particle flux vanishes at the boundaries 
lim,,o J(x, A) = 0 and lims& J(x. A) = 0. The boundary condition at x = 0 reads 

Since PJF & dy = 0, x > 0, we find it convenient to write p(x, A) as 

where 6 ( x ,  A) fulfils a stronger condition 

and where cst(A) is a function of A only and is to be determined later. In appendix A we 
show that the final solution (equation (42)) fulfils the boundary condition (26). The term 
cst(A)/fi is similar to the equilibrium solution and we conjecture that the solution for a 
general hard edge density always has this structure. We now go on to solve equation (25). 
This can be accomplished by 'un-folding' the half-line onto the real line [15]. With the 
change of variables U = U = f i  we have 

(29) 

(30) 

m d y ~ ( ~ , A )  F(Y,A) - i m d v 2 u d ( v 2 , A )  L x-Y x-Y U2 - vz 
& 5 ( U Z , A )  

Now introduce an odd function of U, 

Pi (U, A) 6(u2. A) v > o  (31) 
)?!(U, A) -P(IJ', A) U < 0 (32) 

and find 

The diffusion equation (25) together with equations (33) and (27) becomes 
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Although equation (34) is derived for U > 0 it is also valid for U < 0. This can be seen 
from the fact that 61 is an odd function of U. To proceed further we introduce the even 
function 

and find,jz(u, A) satisfies 

2Acst(A) + 2hu2d2(u, A) = 

We have made use of the flux condition at the origin, equation (28). 
+m m l, du X u ,  A) = 2 l  du M u ,  1) = 0 (37) 

to arrive at equation (36). This completes the un-folding of the half-line diffusion equation 
onto the real line. Clearly, equation (36) can be solved by a Fourier transformation. 

Equation (37) implies that bz(u,A) is an oscillatory function of U and its Fourier 
transform 

+m 

~2(k, k )  := 1, du eikuj*(u. k )  (38) 

vanishes at k = 0. A further condition is that pz  is even in k. 

formulae 
Once &(k, A) is  found, the original density can be recovered by the standard inversion 

A simple calculation shows that the transformed density pzfk. h)  satisfies an Airy equation 
with a point source 

The solution of this equation is a linear combination of Ai(-(11/2A)’/~lkl) and 
Bi(-(rr/2h)1131kl). and reads up to a constant, 

&(k, A) = 37/61Y2/3)(2Air5)1’6 [ Bi(0)Ai (-(z,’”lkl) -Ai(0)Bi(-(&y’31kl)] 

3-11> 
where we have made use of Ai(0) = Bi(0) = - and the relations between 
Ai(-x), Si(-x) and J*;($x’/*) to arrive at equation (41). Note that pz(k,A) vanishes 
at k = 0 and is even i n  k. We now use the jump discontinuity of $ 0 2  across k = 0 to 
determine cst(h): 

Transforming back to p ( x ,  A) with the help of equations (39) and (27) we obtain 
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Therefore the 'time'-dependent density reads as 
W 

p ( x ,  t) = 1 dh.C(h)e-"'p(x, h)  

lY 

(43) 

Equations (42) and (43) will now be used to find the dynamical density-density 
where C(h) is determined by an initial condition. 

correlation function. It is clear that Corr(x, y. t )  and 

ICorr(x, y, t )  := dzCorr(x, z. t )  (44) 

satisfy the same diffusion equation as p ( x ,  f). Hence, 

dhC(h, y)e-"'p(x, A) 

and 

Int(x. y, t) := dzICorr(z, y, t)  I' 
(45) 

(46) 

where we have used equation (A15) in appendix A to arrive at the last equation. C(h ,  y) 
is determined by the 'initial condition' 

A derivation of this formula can be found in appendix B. To find C(h, y) we first perform a 
Fourier sine transform in the variable f i ; l r d f i s i n ( p & ) .  . . , on equation (47) at I = 0 
to obtain an integral equation satisfied by C(h,  y)t: 

This can be rewritten as 

where l . l , ( f ( u ) , t )  = E,(() := r d u f ( u ) u J u ( u t )  denotes the Hankel transform. Using 
the Hankel inversion theorem ( f ( x )  = S,"d{ f u ( t ) t J u ( 4 u )  [16]), we find 

Therefore, the 'time' dependence of the twice-integrated correlation function is displayed 
as a Laplace transform with the spectral parameter A := x/2uZ: 

where F ( x ,  A) := j," dz P ( z ,  A) and P(z ,  h)  is given by equations (27) and (42). Thus, the 
variance of an arbitrary linear statistic: 



This is the main result of our paper. 

4. Variance of 

As an example, we take Q ( x )  = &, which is the Landauer formula for the conductance. 
A simple calculation gives 

with 

where 

Equations (56) and (57) can be found in [17]. Now when n = 1 mod 3, A, is taken to be 
zero; the remaining terms can be grouped into two sums with n = 0 mod 3 and n 2 mod 3, 
respectively. An application of the ratio test to these series shows that they both converge 
absolutely and uniformly for all A .  We deduce that (with p = 2) 

converges uniformly in the h ' p  plane. Using this representation and after performing the 
Laplace transform we obtain 

where 
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This completes the determination of the long 'time' behaviour of Var[&, t ] .  According 
to the Watson lemma [18], equation (59) is an asymptotic expansion. The fact that the 
Brownian-motion ensemble tends to the stationary ensemble with exponential speed as 
soon as r D / y L  >> 1, enables us to conclude that lim,,,Var[Q,f] = 0. At t = 0 we 
simply go back to equation (55) and make use of the completeness theorem of the Hankel 
transform to show @at Var[&,O] = &, a result obtained previously [3,19,20]. Other 
examples of Q can be found in [19]. 

Appendix A. A check of the solution 

In this appendix we are going to show that 

is a solution to the integro-differential equation 

To obtain better convergence in the manipulations we will instead show p ( x ,  A) fulfils the 
equation obtained by integrating equation (A2) from 0 to z. From the boundary condition 
equation (26), we see that the lower boundary term on the right-hand side will vanish; then 
equation (A2) will become 

This equation is a stronger statement than equation (A2) since any constant will vanish when 
equation (A3) is differentiated to give equation (A2). We start by evaluating the right-hand 
side of equation (A33: 

Using the identity 

47c0s(ky) dy = 2rr8(k) + rr,hsin(k&) im z - Y  
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in equation (A5) gives 
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We now turn to the left-hand side of equation (A3): 

The integral with respect to t = f i  is 

The left-hand side is then 

The boundary terms from the partial integration are zero since 

&Jij3  (2F 7 z l k l  312) -constant k-l”cos(constant k3/’ -phase) k + 00 

= O  k = 0 .  

Now 

The boundary term at infinity vanishes; the boundary term at the origin is 

By differentiation 

Gathering the pieces we have 
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and 

Here we make two remarks on the above derivations. 
(i) Since the number of particles in the interval (0, z) goes to zero, when z tends to zero 

the last equation shows that the zero flux condition at the origin is fulfilled. 
(ii) This concerns the z + 00 limit in equation (A15). The integrand on the right-hand 

side is the product of two out-of-phase strongly oscillating functions. Since neither of them 
are absolutely integrable, a Riemann-Lebesque lemma cannot be used to conclude that the 
integral tends to zero. However, we may appeal to the theory of generalized functions and 
state that it is zero. The RHS of equation (A1.5) can be rewritten up to irrelevant constants 
as 

J(a) = l a d y  sin(ya)fi.llfi(6r3/*) 

where a := z/z and b := 5(n/2A)’/2. We wish to determine r ( a )  in the limit a + 00 

with 6 (> 0) fixed. Consider instead, 

The integral we need can be defined as the analytic continuation of 3 ; ( a )  to LL = -4. 
Now, since sin(ax)/x = xS(x) we conclude, by integrating over the 8 function, 
thai limu-,m .&(a) = 0. Hence J(m) = 0. Physically this means that the total number of 
particles in each lambda mode is zero. The zero mode, of course, contains particles. 

Appendix E. The equal time variance of a linear statistic 

The equal time variance of a linear statistic Q is 
a 

Var(Q, 0 )  = lm dx 1 dy Q(x)Q(r) COW,  Y .  0)  

a result first derived in [19] by the method of functional derivatives. The claim in [I91 is 
that the method is valid for all potentials; however, this is flawed by the use of the N = 00 

density which may not exist for all potentials. For the sake of completeness, we present in 
this appendix a small modification of the arguments given in [19] and show that the result 
has a more general validity. Instead of focusing on equation (B17), we prefer to work with 
the partially integrated expressions 

Var(Q, t) = - 1-d~ lm dy Q(x)Q’(y) ICorr(x, Y .  t )  

Var(Q, t )  = dm dx lm dy Q‘(x)Q’(y) Int(x, y. t )  

(B18) 

and 

(B 1% 

wheret 

t To avoid the boundary terms il has been assumed that fhe linear swtistic fulfils .,G Q(x)I,=e = 0. The l i n w  
statistic corresponding to the conductance satisfies this criterion. 
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We start by finding ICorr(x, y ,  0). By definition ugz(x)  = xzt S(x - x;) and 

K J Eriksen and Yang Chen 

The dependence of the energy W on the coordinates xp, x;. . . . , x i  has been suppressed. 
The external potential u ( x )  is assumed to be bounded at the origin which is the physically 
interesting situation. Now write u ( x )  = - l: f(z) dz + u(O), where f ( x )  is the force. The 
constant u(0) can be set to zero as this can always be accomplished by a redefinition of the 
zero-point energy. The energy is now 

where 0 is the Heaviside step function. The functional derivative of W[- 1: f(z) dz] with 
respect to f is 

The functional derivative of uq(x) = (U&, 0))- with respect to f is recognized as 
ICorr(x, y .  0): 

The density u,(x) is approximated by 

where b ( N ,  f) is the upper limit of support of U ( X ,  N ;  f). When t S ( x  - y) is added to 
the force f ( x ) ,  [ S u ( x ,  N ;  f)]/[Sf(y)] is computed as the linear term in 6 .  We have 

(B27) 

where 

is the number of particles associated with the force d ( x - y )  and b := b(N.  f + e S ( x - y ) )  = 
b ( N  - V ,  f) is the upper limit of support of u ( x ;  N ,  f + E S ( X  - y ) )  and u ( x .  N - q; f)t. 
t They have the same u p p r  limil because the pM of a(x. N: f + r6(x - y ) )  corresponding Lo f: 

is a solution, with N - q p ~ i c l e s .  to the problem with the external force f obeying the righl bounday conditions. 
In other words 
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The functional derivative is 

In the limit N -+ CO, ,/(b - x)/(b - y) = 1, and au(x ,  N ) / B N  tend to zero. The extra 
density Ao(x)  when E particles are added to the system does not experience any force in 
the interval (0, b). Therefore, Au(x) is less than the corresponding density with E particles 
in the interval (0, b): 

1 E  
- x E (0,b). 
IT ,/- 

Outside the interval (0, b), A u ( x )  tends monotonically to zero. We conclude, in this limit, 
that the functional derivative is reduced to 

From this it is seen that 

and 

Thus at equal time, variances are independent of the potential U 

References 

[I] Meha M L 1991 Random Mutrices 2nd edn (New York Academic) 
[Z] Stone A D. Mello P A. Muttalib K A and Pichard I-L 1991 Mcsascopic Phenomem in Soli& ed B L 

[3] The uensemble was inlroduced in Chen Y and Manning S M 1994 J. Phys.: Condens. Matter 6 3039. Also, 

[4] Chen Y and Eriksen K J 1994 Cap formation probability of the ucnsemble Preprinr, J. Phys A: Math. Gen. 

[SI The terminology of hwd edge is that of Tracy C A  and Widom H 1994 C,m”n, Muh. Phys. 161 289; 163 

[a] Szafer A and Altshuler B L 1993 Phys. Rev. Lett. 70 587 
[7] Beenakker C W J 1993 Phys. Rev. Lett. 70 4126 
[SI Dyson F J 1972 1. Muh.  Phys. 13 90 
[9] Simons B D and Altshuler B L 1993 Phys. Rev. Lett. 70 4063 

Simons B D, Swfer A and Altshuler B L 1993 Zh Eksp. Teor. Fir. P k .  57 268 (Fa@. Vansl. 1993 JETP 

Altshuler, P A Lee and R A Webb (Amsterdam: North-Holland) 

the level spacing distribution was investigated by [41. 

submitted 

33 

Let(. 57 276) 
[IO] Efetov K B 1983 Adv. Phys. 32 53 
[Ill Beemkkm C W J and Rejaei B 1994 Phy.vica A 203 61 
[I21 Macedo A M S 1994 Phys. REV. B 49 116841. This paper studies the parametric “ M o n s  of the 

transmission eigenvalues (supported on the right half-line) of disordered conductors. However, in this 
formulation the eigenvalue density has no hard edge singularity; n(x)  -constant, x - 0. 

[I31 Chen Y and Manning S M 1994 J.  Phys. A: Math Gen. 27 3615 
[I41 The asymptotic gap formntion probability reads 

exp[-s/@P) + (%B/81 I + - 
Et+(o.s) - G ( I  + C Y )  ,(.(2-B)/4p)+.(.1/2p) [ (J;)] 

where G(.) is lhe Banes G-function. 



1640 K J Eriksen and Yang Chen 

[IS] Akhiezer N I and C l a z m  I M Theory r $ L h r u  Opermor in Hiben Space vol I (New York: Ungar) 
1161 Sneddon I N 1979 The Use rfllntegral 'I'ru&$,mm (New York: McGnw-Hill) 
1171 Fomula 2.12.1.5 of Prudnikov A P, Brychkov Yu A and Marichev 0 I 1986 Integro1 andSeries YOI 2 

[IS] See for example. Mumy J D 1974 Asymplotic Analysis (Oxford Clarendon) 
1191 Beenakker C W J 1993 Phys. Rev. Lett. 70 I155 
I201 Basor E L  and Tracy C A 1993 J. SmI. Phyls. 73 415 

(London: Gordon and Breach) 


